
Natural Symbolic Execution-Based Testing for Big Data

Analytics

YAOXUAN WU, University of California at Los Angeles, USA
AHMAD HUMAYUN, Virginia Tech, USA
MUHAMMAD ALI GULZAR, Virginia Tech, USA
MIRYUNG KIM, University of California at Los Angeles, USA

Symbolic execution is an automated test input generation technique that models individual program paths as
logical constraints. However, the realism of concrete test inputs generated by SMT solvers often comes into
question. Existing symbolic execution tools only seek arbitrary solutions for given path constraints. These
constraints do not incorporate the naturalness of inputs that observe statistical distributions, range constraints,
or preferred string constants. This results in unnatural-looking inputs that fail to emulate real-world data.

In this paper, we extend symbolic execution with consideration for incorporating naturalness. Our key
insight is that users typically understand the semantics of program inputs, such as the distribution of height
or possible values of zipcode, which can be leveraged to advance the ability of symbolic execution to produce
natural test inputs. We instantiate this idea in NaturalSym, a symbolic execution-based test generation
tool for data-intensive scalable computing (DISC) applications. NaturalSym generates natural-looking data
that mimics real-world distributions by utilizing user-provided input semantics to drastically enhance the
naturalness of inputs, while preserving strong bug-finding potential.

On DISC applications and commercial big data test benchmarks, NaturalSym achieves a higher degree of
realism —as evidenced by a perplexity score 35.1 points lower on median, and detects 1.29× injected faults
compared to the state-of-the-art symbolic executor for DISC, BigTest. This is because BigTest draws inputs
purely based on the satisfiability of path constraints constructed from branch predicates, while NaturalSym
is able to draw natural concrete values based on user-specified semantics and prioritize using these values
in input generation. Our empirical results demonstrate that NaturalSym finds injected faults 47.8× more
than NaturalFuzz (a coverage-guided fuzzer) and 19.1× more than ChatGPT. Meanwhile, TestMiner (a
mining-based approach) fails to detect any injected faults. NaturalSym is the first symbolic executor that
combines the notion of input naturalness in symbolic path constraints during SMT-based input generation.
We make our code available at https://github.com/UCLA-SEAL/NaturalSym.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Symbolic Execution, Naturalness, DISC Applications

1 INTRODUCTION

Data-intensive scalable computing (DISC) applications have emerged as a necessity for large-
scale data processing. DISC Frameworks such as MapReduce [26] and Apache Spark [69] provide
interfaces for developers to manage and manipulate data across clusters at large scale. Despite the
widespread adoption of these DISC frameworks, there still remain significant challenges associated
with automated test input generation for DISC applications.

Symbolic execution is a popular white-box test generation technique [18, 28, 51]. Symbolic
executors traverse program paths symbolically and collect the branch predicate along the executed
path to model logical constraints corresponding to individual program paths. An SMT solver such
as CVC5 [14] or Z3 [25] then produces concrete solutions that satisfy these path constraints. Test
cases generated by symbolic execution are desirable due to their capability to enumerate individual
program paths and increase code coverage in a systematic manner. Further, the test inputs generated

Authors’ addresses: YaoxuanWu, University of California at Los Angeles, Los Angeles, USA, thaddywu@cs.ucla.edu; Ahmad
Humayun, Virginia Tech, Blacksburg, USA, ahmad35@vt.edu; Muhammad Ali Gulzar, Virginia Tech, Blacksburg, USA,
gulzar@cs.vt.edu; Miryung Kim, University of California at Los Angeles, Los Angeles, USA, miryung@cs.ucla.edu.

HTTPS://ORCID.ORG/0009-0001-0623-4110
HTTPS://ORCID.ORG/0000-0002-5707-4487
HTTPS://ORCID.ORG/0000-0002-8007-8662
HTTPS://ORCID.ORG/0000-0003-3802-1512
https://github.com/UCLA-SEAL/NaturalSym
https://orcid.org/0009-0001-0623-4110
https://orcid.org/0000-0002-5707-4487
https://orcid.org/0000-0002-5707-4487
https://orcid.org/0000-0002-8007-8662
https://orcid.org/0000-0003-3802-1512

118:2 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

by symbolic execution are often concise, as symbolic execution generates a single input that covers
the equivalence class of each program path.

However, developers often complain that the inputs generated by SMT solvers appear unrealistic
[30]. Suppose an application analyzes the average height of adults in California using a dataset that
may include non-California residents and people born after 2005. One of the application’s path
constraints represents an equivalence class of inputs that map to non-California residents born
before the year 2005 expressed as birth_year<2005 && state_of_residence!="CA". For this
path constraint, CVC5 generates a test input with state_of_residence="" and birth_year=0,
despite the fact an empty string does not correspond to any state and a birth year of 0 is highly
improbable. Such test data may be dismissed as irrelevant due to its implausibility; the highly
unlikely nature of these inputs might lead developers to overlook potential bugs, as they appear
less relevant to practical scenarios.
The root cause of unnaturalness is that existing symbolic executors construct path constraints

only from branch predicates in code. As a result, SMT solvers ignore implicit semantic input
constraints, despite input variables often embodying corresponding semantics. In the example
above, the birth year of participants in the dataset should fall within a reasonable range, such as
1900≤birth_year≤2023; the state of residence should correspond to one of 50 states in the US,
such as "CA"; and the height should conform to a distribution, such as Gaussian(1.70,0.1).
Existing SMT solvers are not designed to incorporate such prior knowledge about input vari-

ables [18–21]. Therefore, symbolic executors generate concrete inputs without consideration of the
likelihood of seeing such solutions in the underlying real-world data distribution. This inherently
limits the potential for symbolic executors to generate natural test inputs.
We propose a new symbolic test generation tool, named NaturalSym, which increases test

comprehensibility by instilling naturalness constraints during SMT-based input generation. We
enhance the naturalness of generated test inputs, while achieving high path coverage as exist-
ing symbolic executors. As most DISC applications primarily handle tabular data, NaturalSym
incorporates realism constraints for each table column in three formats: (1) the underlying data
distribution (e.g., Gaussian or Uniform), (2) the numerical range, and (3) real-world samples from
the column. For example, users can specify the preferred value list for state_of_residence as
Discrete("CA", "IL", "AZ") and the range of birth_year as [1900, 2023]. To generate test
inputs, NaturalSym first creates concrete samples for each column based on user annotations. It
then prioritizes the use of these realistic values when generating tests for each program path. For the
path birth_year<2005 && state_of_residence!="CA", NaturalSym produces state="IL",
birth_year=1990, height=1.75 instead of state="", birth_year=0, height=0. Our method
leverages both the power of constraint solving and user specifications about the underlying data
distribution, producing high-quality tests that achieve superior path coverage and naturalness.

We compare NaturalSym against BigTest [30], a symbolic execution-based DISC test generator
that does not model naturalness constraint as we do. Our evaluation shows that NaturalSym
achieves the same path coverage as BigTest, yet uncovers 17.4 more injected faults on average.
Although both tools consider the same set of program paths, we find that NaturalSym’s natural-
looking test data better reflects real-world scenarios and is more effective in uncovering program
errors than BigTest. As naturalness is a subjective notion without a universally accepted quantita-
tive metric, we utilize a well-known metric perplexity [55] from the natural language processing
domain as a reasonable proxy to quantify the naturalness of a test. NaturalSym achieves a perplex-
ity score 35.1 points lower than BigTest. In our user studies, participants unanimously preferred
the tests generated by NaturalSym, finding that they better aligned with the semantics of the
columns. In addition, NaturalSym generates 86.7% fewer numerical outliers compared to BigTest.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:3

Table 1. Four program paths enumerated by symbolic execution, visualized in Fig. 1c. Valid tests generated

by CVC5 are shown for every path condition. In this example, each table only contains a single row.

Path condition input1 input2

𝜑1

input1.split(",")(0) = input2.split(",")(1)
&& input2.split(",")(2).toInt-input2.split(",")(3).toInt>5000
&& input2.split(",")(4).substring(0,4).toInt-input2.split(",")(1).toInt<10

"," ",0,9000,0,0009,0"

𝜑2 input2.split(",")(2).toInt-input2.split(",")(3).toInt≤5000 "„0,0„"

𝜑3
&& input2.split(",")(2).toInt-input2.split(",")(3).toInt>5000
&& input2.split(",")(4).substring(0,4).toInt-input2.split(",")(1).toInt≥10

",9,9000,9,9999,"

𝜑4

input1.split(",")(0) ≠ input2.split(",")(1)
&& input2.split(",")(2).toInt-input2.split(",")(3).toInt>5000
&& input2.split(",")(4).substring(0,4).toInt-input2.split(",")(1).toInt<10

"," "A,0,9000,0,0009,0"

We also compare NaturalSym with other test generation tools beyond symbolic execution: (1)
NaturalFuzz [36], a coverage-guided fuzzer that aims to improve the naturalness of generated
inputs for DISC programs; (2) TestMiner [27], a mining-based test generator; and (3) ChatGPT [3],
a representative large language model. NaturalFuzz, TestMiner, and ChatGPT cover 77.5%, 96%,
and 77.3% fewer program paths respectively, and find 97.9%, 100%, and 94.8% fewer injected faults
than NaturalSym. Our empirical results all suggest that NaturalSym can generate higher quality
tests in terms of naturalness, while maintaining high code coverage and bug-finding potential.

The contributions of our work are summarized below:
• We are the first to incorporate the notion of naturalness into symbolic execution-based
test generation. NaturalSym does not sacrifice path coverage while only adding a small
runtime overhead. In addition, we detected 17.4 more injected faults on average than the
state-of-the-art DISC symbolic executor BigTest.
• We enable a developer to specify prior knowledge about the underlying statistical dis-
tribution, range constraints, or a dictionary of preferred known values of each column.
Additionally, we devise a new algorithm that iteratively invokes SMT solvers to refine the
naturalness of the generated test cases. Not all naturalness constraints, specifically statistical
distributions, can be encoded as a precondition in SMT constraints easily. Our results show
that incorporating statistical distribution reduces numerical outliers by 21.5%.
• We use perplexity to quantify naturalness and perform two user studies to assess the quality

of test data from users’ perspectives, suggesting NaturalSym’s advantage over BigTest in
terms of naturalness.
• We compare our tool against alternative natural test generators such as NaturalFuzz,
TestMiner, and ChatGPT, demonstrating superior path coverage and defect detection.
This advantage stems from NaturalSym’s unique ability to exploit path constraints via
symbolic execution while improving test naturalness.

2 MOTIVATING EXAMPLE

We present a motivating example from our benchmark, Usedcars, to demonstrate the need for
realistic input generation. Suppose Alice retrieves the Carvana transaction data and writes a scala-
based DISC application to identify the model names and mileage information of used cars that are
less than 10 years old and have discounts exceeding $5,000, as shown in Fig. 1a. She reads two tables
from CSV files into Resilient Distributed Datasets (RDDs). She then creates an RDD named basics
from input1 using a map operation. The associated UDF 1 extracts the first column vehicle_id
and second column model from each row. Similarly, input2 is transformed into sales, which
contains tuples of (vehicle_id, miles). Finally, result contains the result of joining basics

118:4 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

1 val input1 = sc.textFile("car_model.csv")
2 val input2 = sc.textFile("car_info.csv")
3 val basics = input1.map 1 (row => {
4 val vehicle_id = row.split(",")(0)
5 val model = row.split(",")(1)
6 (vehicle_id, model)
7 })
8 val sales = input2.filter 2 (row => {
9 val price = row.split(",")(2).toInt
10 val disc = row.split(",")(3).toInt
11 price - disc > 5000
12 })
13 .filter 3 (row => {
14 val sold_year = row.split(",")(4)
15 .substring(0,4).toInt
16 val pro_year = row.split(",")(1).toInt
17 sold_year - pro_year < 10
18 })
19 .map 4 (row => {
20 val vehicle_id = row.split(",")(0)
21 val miles = row.split(",")(5).toInt
22 (vehicle_id, miles)
23 })
24 val result = basics.join 5 (sales)
25 return result

(a) usedcars.scala

(b) Example input of usedcars.scala

(c) Enumerated program paths in symbolic execution.

Fig. 1. A DISC application, reading Carvana used car transaction records from two tables and summarizing

the model and mileage information. An example input is shown in (b) and the graph of program paths is

shown in (c).

(a) BigTest generated test case for the path 𝜑1 in usedcars.scala
input1

vehicle_id model
input2

vehicle_id year price sold_price sold_date miles
0 9000 0 0009 0

(b) NaturalSym generated test case for the same path 𝜑1 in usedcars.scala
input1

vehicle_id model
2432422 Fit

input2
vehicle_id year price sold_price sold_date miles
2432422 2014 28735 14788 2022-07-05 63342

Fig. 2. (a) and (b) are tests generated by BigTest and NaturalSym for the same path 𝜑1 shown in Table 1.

Both tests are visualized and aligned with the table header.

and sales on the key vehicle_id, yielding model and mileage information for used cars less than
10 years old with discounts exceeding $5,000.

To test the DISC program, Alice runs symbolic execution such as BigTest to thoroughly enumer-
ate program paths and generate corresponding test inputs. Table 1 displays four path constraints,
along with tests obtained using SMT solvers such as CVC5. Since the program lacks an aggregation
operator like reduce, symbolic execution is limited to scenarios where each table contains at most
one row. Fig. 3 shows the first path constraint 𝜑1 in SMT2 format. It represents a non-terminating
case where a row in input2, corresponding to a used car <10 years old with a discount >$5000,
successfully joins with a row from input1. For this program path, CVC5 produces a test with a
row "," in input1 and a row ",0,9000,0,0009,0" in input2, as visualized in Fig. 2a with its schema.

Symbolic execution can produce high-quality tests in terms of path coverage and bug detection
capability, yet the naturalness of the generated test cases is poor since Alice finds test data like
",0,9000,0,0009,0" unrealistic. The last column, indicating a mileage of 0, is unlikely to appear in a

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:5

1 (assert (= input2 (str.++ (str.++ (str.++ (str.++ (str.++ input2_d0 (str.++ ","
input2_d1)) (str.++ "," input2_d2)) (str.++ "," input2_d3)) (str.++ "," input2_d4
)) (str.++ "," input2_d5))))

2 (assert (= input1 (str.++ input1_d0 (str.++ "," input1_d1))))
3 (assert (>= (str.len input2_d4) 4))
4 (assert (= input1_d0 input2_d0)))
5 (assert (and (> (- (str.to_int input2_d2) (str.to_int input2_d3)) 5000) (and (

isinteger input2_d3) (isinteger input2_d20))))
6 (assert (< (- (str.to_int (str.substr input2_d4 0 (- 4 0))) (str.to_int input2_d1))

10) (and (isinteger input2_d1) (and (isinteger (str.substr input2_d4 0 (- 4 0)))
(and (isinteger input2_d5)))))

Fig. 3. The actual path condition 𝜑1 for the first path in Table 1, written in SMT2 format. 𝜑1 corresponds to
the case where both tables contain a row with the same vehicle_id, while the associated used car is <10 years

old with a discount >$5,000.

used car transaction record. Similarly, "0009" is an invalid date. Alice favors more natural test data,
as unrealistic tests put more burden on users to comprehend them. Moreover, bugs triggered by
realistic data are more worthy of fixing than bugs induced by unrealistic, unlikely data. Hence, the
naturalness of tests is crucial from both perspectives.
To enhance test naturalness, NaturalSym allows users to provide semantic information about

inputs, such their the underlying statistical distributions. In the running example, Alice can la-
bel the sold_price column as Gaussian(𝜇 = 2 × 104, 𝜎 = 104) and the model column as
Discrete("Ford", "Hyundai"). Rather than solely invoking CVC5 with path condition 𝜑1, Natural-
Sym will draw concrete samples for each column based on user annotations and prioritize the
use of these realistic values in constraint solving. For instance, NaturalSym generates a realistic
test, as visualized in Fig. 2b. The sold_price is set as 14788 rather than 0; the car model is "Ford"
instead of an empty string; and the sold_date is "2022-07-05" rather than "0009." All elements in
the generated test appear more natural-looking while satisfying the path condition 𝜑1.

3 METHODOLOGY

In this section, we formalize the problem of improving naturalness in test generation as an optimiza-
tion problem, known as an OMT problem (the optimization version of an SMT problem) [48]. We
briefly discuss the challenges of setting up reasonable naturalness oracles and solving optimization
problems. Then, we demonstrate how users can specify their prior knowledge about underlying
distributions, numerical ranges, and preferred values over each input variable in NaturalSym.
Finally, we propose an effective greedy algorithm to improve test naturalness, which introduces
1.47× runtime overhead compared to plain symbolic execution.

3.1 Formalization

Symbolic execution enumerates program paths and collects the logical constraints along each
path, the so-called path conditions. Table 1 lists four path conditions of the motivating program in
Fig. 1a. A path condition is usually expressed in SMT-LIBv2 format [15], also known as a Satisfiability
Modulo Theories (SMT) formula. For example, Fig. 3 shows a concrete path condition 𝜑1 from
Table 1 written in SMT-LIBv2 format. A world 𝜔 is a function that maps a variable to a concrete
value, i.e., a complete variable assignment. The set of worlds that satisfy the path condition 𝜑

forms the models of 𝜑 , i.e., 𝑀𝑜𝑑𝑠 (𝜑) = {𝜔 | 𝜔 ⊨ 𝜑}. Alternatively speaking,𝑀𝑜𝑑𝑠 (𝜑) includes all
concrete assignments that satisfy the path condition 𝜑 . To generate a test that executes the path 𝜑1,
traditional symbolic executors will send the path condition to SMT solvers such as Z3 [25] or CVC5
[14] to obtain a valid solution. However, SMT solvers will return an arbitrary solution within the
solution space𝑀𝑜𝑑𝑠 (𝜑) without any regard for naturalness.

118:6 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Therefore, we assume a naturalness oracle exists for any input assignments, 𝑛𝑎𝑡_𝑠𝑐𝑜𝑟𝑒 (𝜔). The
naturalness oracle quantifies the degree of naturalness as a numerical score. To improve naturalness,
we not only desire solvers to provide a valid solution but also to maximize the naturalness score,
which turns out to be an Optimization Modulo Theories (OMT) problem [48].

argmax
𝜔
{𝑛𝑎𝑡_𝑠𝑐𝑜𝑟𝑒 (𝜔) | 𝜔 ⊢ 𝜑}

However, this poses a challenging problem on two fronts. (1) Since naturalness is inherently
subjective, defining an oracle to quantify its degree is difficult. In addition, the natural characteristics
of tabular data, including string format restrictions, numerical range, and foreign key relationships
connecting multiple tables, are diverse and complex. (2) OMT solving is computationally more
demanding than standard SMT solving. Thus, it is necessary to devise an appropriate naturalness
oracle that encapsulates key aspects of naturalness and to design an efficient algorithm that adds
little runtime overhead compared to standard SMT solving. We present our solution to these
challenges in the next sections.

3.2 Additional Prior Knowledge Annotation

Existing symbolic executors collect only path constraints. To enhance test naturalness, NaturalSym
enables users to specify their prior knowledge in an additional configuration file. Specifically, for
each column, users can (1) specify the underlying distribution, (2) set an optional value range for
numbers, or (3) provide some concrete examples from actual data. Currently, NaturalSym supports
Gaussian distributions, uniform distributions over intervals, and uniform discrete distributions,
with potential for future extensions. The DSL of our annotation language is shown in Fig. 4.

An example of user-specified knowledge for the used car transaction record table is displayed
in Fig. 5, where annotations are aligned with each column header. The miles column is expected
to follow a Gaussian distribution with parameters 𝜇 = 50000 and 𝜎 = 104, and a minimum
mileage of 100, annotated as 100 ≤ Gaussian(50000,104). Similarly, the model column is labeled
with Discrete("Fit",...), indicating it should match actual car model names. Notably, user
annotations can be incomplete. For example, the model column may be labeled simply with a
preferred subset such as Discrete("Ford", "Hyundai"), without listing all available car models
on the market.
While NaturalSym has the potential to support a wider variety of distribution types and

incorporate more types of prior knowledge in the future, such as consistency constraints across
columns and tables, empirical experiments show that the currently supported annotations effectively
capture sufficient prior knowledge. They also help mitigate several common issues with unnatural
data, such as numerical outliers and missing values.

3.3 Our Algorithm

Fig. 6 illustrates the pipeline of NaturalSym. Initially, NaturalSym reads user annotations from
an additional configuration file and collects path conditions through symbolic execution on the

𝑆𝑐ℎ𝑒𝑚𝑎 : R+

R : V := D(,D)∗

D : (𝑙 ≤)?𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎) (≤ 𝑟)? | 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ({𝑑1, 𝑑2, 𝑑3, · · · , 𝑑𝑘 }) | 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑙, 𝑟)

Fig. 4. DSL for user annotation, showing how developers specify semantics for each table column.

input1
vehicle_id model

Discrete(2432422,. . .) Discrete("Fit",. . .)

input2
vehicle_id year price sold_price sold_date miles

Discrete(3432422,. . .) Uniform(2009,2022) Gaussian(3 × 104,104) Gaussian(2 × 104,104) Discrete("2022-07-03",. . .) 100≤Gaussian(50000,104)

Fig. 5. User annotations for the input tables of the used car program, as shown in Fig. 1a.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:7

Fig. 6. Pipeline of NaturalSym. In addition to the target program, NaturalSym reads a configuration file in

which users specify prior knowledge about inputs. Then, the refiner combines realistic value choices from the

configuration file and the path conditions from the symbolic executor to invoke the SMT solver iteratively.

target program. For each program path, it then enhances test naturalness by iteratively invoking the
SMT solver. In this section, we detail how user prior knowledge is transformed into the naturalness
oracle and how we maximize the naturalness score of the generated tests.

Oracle selection. Based on user prior knowledge, we draw 𝑀0 concrete samples 𝑆𝑖𝑣𝑎𝑟 for each
input variable 𝑖𝑣𝑎𝑟 , which corresponds to a table element. For example, if a column containing
𝑖𝑣𝑎𝑟 is annotated to follow a Gaussian distribution 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(5, 2), we directly sample𝑀0 concrete
values using a Gaussian sampler. Then, we define the naturalness oracle as follows:

𝑛𝑎𝑡_𝑠𝑐𝑜𝑟𝑒 (𝜔) =
∑︁

𝑖𝑣𝑎𝑟 ∈𝐼
[𝜔 (𝑖𝑣𝑎𝑟) ∈ 𝑆𝑖𝑣𝑎𝑟] . (1)

The naturalness score of a model 𝜔 is determined by the number of input variables whose values
fall within their corresponding sample sets 𝑆𝑖𝑣𝑎𝑟 . Consider a path condition date.substring(0,4)
== year, with the sample sets 𝑆𝑑𝑎𝑡𝑒={"2018-01-01","2017-01-01"} and 𝑆𝑦𝑒𝑎𝑟={"2017", 2015"}. In this
scenario, the solution date="2017-01-01" and year="2017" achieves a naturalness score of 2, as
both variables appear in their respective sample sets. This solution is optimal under the defined nat-
uralness oracle. In general, our naturalness score guides the solution towards selecting values from
the sample sets. Given that these sample sets are derived from user annotations, our optimization
objective, namely the naturalness score, aligns with our goal of enhancing test naturalness.

Greedy optimization solving. Considering the inefficiency of OMT solving, NaturalSym uses a
more efficient greedy algorithm to generate realistic inputs. Our algorithm, shown in Algo. 1, takes
a path condition 𝜑 and user knowledge K as input. We first invoke the SMT solver once to obtain
an initial solution for the specific path. Then, our algorithm works in a step-by-step manner to
improve test naturalness.
In each step, we try to improve the naturalness of a new input variable 𝑖𝑣𝑎𝑟 , where each input

variable represents a table element. Based on user annotation K , we draw 𝑀0 concrete realistic
instances 𝑆𝑖𝑣𝑎𝑟 for 𝑖𝑣𝑎𝑟 . If 𝑖𝑣𝑎𝑟 is not part of the path condition, we can freely assign any value
from its sample set 𝑆𝑖𝑣𝑎𝑟 without making additional SMT calls. Otherwise, we attempt to restrict
its value choices to those within 𝑆𝑖𝑣𝑎𝑟 . Specifically, we conjoin the current path condition 𝜑 with
𝑖𝑣𝑎𝑟 ∈ 𝑆𝑖𝑣𝑎𝑟 and invoke the SMT solver. The new constraint of value choices can be expressed as
assert (or (= ivar 𝑐ℎ𝑜𝑖𝑐𝑒1) ... (= ivar 𝑐ℎ𝑜𝑖𝑐𝑒𝑘)) in SMT2Lib format. If the modified path
condition is satisfiable, we achieve a refined solution and increase the naturalness score by 1. We
greedily retain the value choice constraints on 𝑖𝑣𝑎𝑟 and update our solution. If unsatisfactory, we
discard the value choice constraint for 𝑖𝑣𝑎𝑟 and revert to the previous path condition.

Fig. 7 illustrates our algorithm using a concrete example. Initially, NaturalSym receives a path
condition from the underlying symbolic executor and obtains a primitive solution using CVC5.

118:8 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Algorithm 1: Greedy algorithm to improve naturalness
Input: A program path condition 𝜑 , an input variable set 𝐼 , and user specified knowledge K .
Output: A valid and natural solution 𝑆𝑜𝑙

1 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑠𝑜𝑙𝑣𝑒𝑟 (𝜑)
2 if 𝑅𝑒𝑠𝑢𝑙𝑡 is UNSAT then
3 return None
4 end
5 𝑆𝑜𝑙 ← returned model in 𝑅𝑒𝑠𝑢𝑙𝑡

6 for 𝑖𝑣𝑎𝑟 ∈ 𝐼 do
7 𝑆𝑖𝑣𝑎𝑟 ←𝑀0 concrete values based on K
8 if 𝑖𝑣𝑎𝑟 is a free variable in 𝜑 then
9 𝑣 ← arbitrary value in 𝑆𝑖𝑣𝑎𝑟

10 𝑆𝑜𝑙 (𝑖𝑣𝑎𝑟) ← 𝑣

11 𝜑 ← 𝜑 ∧ (𝑖𝑣𝑎𝑟 = 𝑣)
12 end
13 else
14 𝜑 ′ ← 𝜑 ∧ (𝑖𝑣𝑎𝑟 ∈ 𝑆𝑖𝑣𝑎𝑟)
15 𝑅𝑒𝑠𝑢𝑙𝑡 ′ ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑠𝑜𝑙𝑣𝑒𝑟 (𝜑 ′)
16 if 𝑅𝑒𝑠𝑢𝑙𝑡 ′ is SAT then
17 𝑆𝑜𝑙 ← returned model in 𝑅𝑒𝑠𝑢𝑙𝑡 ′

18 𝜑 ← 𝜑 ′

19 end
20 end
21 end
22 return 𝑆𝑜𝑙

In step 1, we sample two instances {2432422,2432244} for vehicle_id based on the user annota-
tion 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (2432422, . . .). We attempt to constrain the value choices of input1.vehicle_id by
conjoining the current path condition with input1.vehicle_id ∈ {2432422,2432244}. Upon
invoking CVC5, we obtain a refined solution where vehicle_id is set as 2432422. In step 2,
recognizing that model is a free variable, we directly assign it the concrete value "Fit" from its
sample set. The path condition is updated accordingly to retain this choice in subsequent steps.
In step 3, constraining input2.vehicle_id to its sample set {3432422,3432244} is impossible due
to a conflict with the condition input1.vehicle_id=input2.vehicle_id. Hence, we remove
the constraint on input2.vehicle_id and revert the path condition to its previous state. Im-
portantly, even if we successfully constrain a variable 𝑖𝑣𝑎𝑟 within its sample set, we still keep
various options for 𝑖𝑣𝑎𝑟 in the path condition rather than immediately fixing its value. For ex-
ample, setting sold_date to "2022-07-05" in step 4 would conflict with potential year choices
{2010, 2011} in step 5 because the car is expected to be less than 10 years old, as defined by the
condition sold_date.substring(0,4).toInt - year < 10. Therefore, we keep various choices
{"2018-03-06", "2022-07-05"} for sold_date, enhancing the potential for further refinement.

In general, our algorithm obtains realistic concrete instances for each input variable based on
user-specified knowledge and refines these variables greedily. Even if all refinement attempts
fail, the algorithm still yields a valid solution for any satisfiable path condition. We have further
optimized the handling of free variables to reduce the additional SMT calls, which are the primary
bottleneck of the algorithm.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:9

Fig. 7. A running example of our algorithm, refining the test for the program path 𝜑1 (Table 1) of usedcars.scala
(Fig. 1a). 𝜑1 represents the scenario where both tables contain a row with the same vehicle_id, while the
corresponding used car has an age <10 and a discount >5000. In each iteration, NaturalSym dynamically

modifies the path condition by adding new naturalness constraints. For simplicity, the path condition is not

written in strict SMT format, and𝑀0 is set to 2.

4 EVALUATION

Our evaluation aims to answer the following research questions.
• RQ1: Does NaturalSym generate more realistic inputs than plain symbolic execution?
• RQ2: Does NaturalSym achieve high path coverage and fault detection capability?
• RQ3: How much overhead is incurred by refining test naturalness in NaturalSym?
• RQ4: How much does the knowledge of statistical distributions contribute to NaturalSym?
• RQ5: Does NaturalSym perform better than alternative other test generators beyond
symbolic execution?

In Section 4.1, we use perplexity scores from large language models as a naturalness proxy
to compare NaturalSym against the state-of-the-art symbolic executor BigTest. In Section 4.2,
we apply mutation testing [37] to measure the fault detection capability of NaturalSym and
BigTest and report the runtime overhead introduced by our tool. Due to the lack of real-world
DISC faulty benchmarks, we inject faults into our benchmarks similar to previous works [30, 36]. A
test generator detects a fault when at least one test yields different outputs between the original and

118:10 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Table 2. DISC programs and their descriptions.

Program Description #Datasets
Airport (P1) Filter all the open airports with an elevation above 1000 feet in the region code ’CA’, and

output their GPS coordinates information.
2

Credit (P2) Compute the maximum installment payment amount made by individuals in each profession
for purchasing a new car.

1

Usedcars (P3) Analyze the Carvana transaction records to identify the make and mileage information of
used cars with discounts greater than 5000 dollars and less than 10 years old.

2

Movie (P4) Calculate the number of old films in the IMDB database released bewteen 1900 to 1960, with
audience ratings of no less than 4 points, categorized by genre.

1

Transit (P5) Calculate the total layover time of passengers at each airport. 1
TPC-DS Q1 Find customers who have returned items more than 10,000 us dollors for a store in a given

state for a given year.
4

TPC-DS Q3 Report the total extended sales price per item brand of a specific manufacturer for all sales in
a specific month of the year.

3

TPC-DS Q6 List all the states and the number of customers who during a given month bought items with
the price tag higher than 100.

5

TPC-DS Q7 Compute the total quantity of promotional items sold in stores where the promotion is not
offered by mail or a special event. Restrict the results to a specific gender, marital, and
educational status.

5

TPC-DS Q12 For each item in a list of given categories, during a 30-day time period, sold through the web
channel, compute the sales of that item.

3

TPC-DS Q15 Report the total catalog sales for customers in selected geographical regions or who made
large purchases for a given year and quarter.

4

TPC-DS Q19 Compute the total revenue by products bought by out of zip code customers for a given year,
month, and manager.

6

TPC-DS Q20 Compute the total revenue by item class and total revenue for specified item categories and
time periods.

3

faulty program. In Sections 4.3 and 4.4, we design two user study tasks to assess naturalness quality.
In Section 4.5, we compute the portion of numerical outliers in the generated values from Gaussian
columns and conduct an ablation study by ignoring statistical distributions in user annotations. In
Sections 4.6, 4.7, and 4.8, we compare NaturalSym against othe natural test generators.

Baselines. We compare NaturalSym against (1) BigTest [30], a symbolic execution-based DISC
testing tool. In addition, we compare NaturalSym against alternative natural test generators: (2)
NaturalFuzz [36], a coverage-guided fuzzer that extracts column values from real datasets and
then weaves them together to improve both test naturalness and statement coverage; (3) TestMiner
[27], which predicts suitable input values based on mined tests from Maven Central Repository [7];
(4) ChatGPT [3], which is a representative large language model. We further compare our tool
against the variants of NaturalFuzz and TestMiner: (5) NaturalFuzz-H (NaturalFuzz-Hybrid),
taking seeds from both the original dataset and BigTest; (6) NaturalFuzz-P (NaturalFuzz-
PureSymbolic), taking seeds from BigTest only; (7) TestMiner-DM+ (TestMiner-DataMining+),
with extra data-mining from DISC program datasets.

Benchmarks. Our benchmark suite originates from two sources: five subject programs similar to
prior Big Data Analytics debugging or testing and another eight subject programs derived from
the TPC-DS benchmark [45], a commercial benchmark suite. Transit is developed and used by
[30, 31]. Usedcars, Airport, Credit, and Movie are custom Apache Spark applications based
on online publicly available datasets [1, 2, 6, 32]. The TPC-DS benchmark contains 99 real-word
SQL queries along with vital business information, such as customer, order, and product data. The
TPC-DS benchmark was originally designed as a standard for performance testing of operating
systems and databases. NaturalFuzz [36] translated eight SQL queries into Scala-based Apache

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:11

Table 3. The median perplexity across 18 input tables. Lower perplexity suggests better naturalness.

Original BigTest NaturalSym NaturalFuzz NaturalFuzz-H
2.27 40.01 4.90 3.48 3.67

NaturalFuzz-P TestMiner TestMiner-DM+ ChatGPT
79.35 4.73 36.36 16.92

Spark applications to evaluate code coverage and bug-finding capabilities of fuzzing tools. We
further refactor floating point variables to integers as NaturalSym’s symbolic executor does not
currently support floating point modeling. Table 2 shows the detailed descriptions of benchmark
programs. In total, our benchmark suite contains 13 programs.

Fault Injection. To test the fault detection capability of NaturalSym, we adopt mutation strategies
from previous works to inject faults into each program. BigTest [30] investigated seven common
types of errors in DISC applications, such as using the wrong join type. We manually insert each
type of error into each original program if applicable. For example, we add into our benchmark
suite a faulty program with a.rightOuterJoin(b) when there exists a.join(b) in a subject
application. NaturalFuzz [36] replaced each binary operator in DISC programs with a random
wrong operator to extend its faulty program suite. For example, a.reduceByKey(_+_) may be
mutated as a.reduceByKey(_-_). We use the same script from [36] to generate faulty mutants for
the 8 TPC-DS programs. In total, our benchmark suite contains 80 faulty programs.

Implementation. NaturalSym uses BigTest to collect path constraints from subject programs.
Scala programs are compiled into Java bytecode and are then analyzed by Symbolic Path Finder [52].
We refer our readers to BigTest [30] for more details. NaturalSym refines concrete choices based
on user specifications through sampling and then iteratively invokes SMT solvers to solve the path
constraints conjunct with value choice constraints. In evaluation, we use the same symbolic executor
and backend constraint solver, CVC5, for BigTest and NaturalSym to ensure a fair comparison.

Experiment Setup. We set the size of sample sets as𝑀0 = 10, as ten concrete examples provide
sufficient realistic choices and acceptable overhead empirically. In user studies, we recruit nine
computer science PhD students with extensive coding experience via email. We run our experiments
on Apache Spark 2.4 and HDFS 1.0.3. All the experiments are conducted on a Dell PowerEdge R630
Server with 224GB RAM and 2 Intel Xeon E5-2640 v3 2.60GHz 8-core processor CPUs running
Ubuntu 22.04.

4.1 Perplexity Measurement

We quantify the naturalness of generated tests using a well-known metric called perplexity [55].
For each input table, we fine-tune Distilled-GPT2 [4] on its original dataset, where each row is
converted into plain text delimited by commas. We then evaluate the perplexity of rows generated
by NaturalSym and baselines using the fine-tuned models. Although perplexity is widely adopted
to assess text quality, it fails to accurately reflect the unnaturalness of ”„„,”, an empty row in
tabular data, which reports a low perplexity score due to its highly repetitive and common pattern.
To address this limitation, we insert a <PAD> token in each empty column to penalize tools for
generating such tests with numerous empty columns.
Table 3 shows the median perplexity scores for each baseline along with the original data.

We observe that the tests generated by NaturalSym are more natural than those generated by
BigTest, as it achieves a perplexity that is 35.1 points lower. The only input dataset of Movie
(P4) contains 5 columns: MovieName,Year,Genre,Ratings,Duration. For the path condition
1960≤year, BigTest generates a row ",9000„," which sets the year to 9000 while leaving other parts

118:12 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Table 4. Number of covered program paths by each tool averaged over 5 runs. "-" stands for crashes on specific

baselines. NaturalSym preserves the same path coverage as BigTest and surpasses all other baselines.

Subject program
P1 P2 P3 P4 P5 Q1 Q3 Q6 Q7 Q12 Q15 Q19 Q20 Total

NaturalSym 5 5 4 4 6 7 5 8 11 11 23 10 11 110
BigTest 5 5 4 4 6 7 5 8 11 11 23 10 11 110

NaturalFuzz 2 - 1 - - 1.8 2 5 3.2 2.6 3.2 2 2 24.8
NaturalFuzz-H 2 - 1.8 - - - 2.2 - 2.4 2 3.8 2 - 16.2
NaturalFuzz-P 2 - 2.8 - - 2 2.2 2.4 4.6 3 3.8 2 1.4 26.2
TestMiner 1 0 1 1 0 0 0 0 0 0.2 0.8 0 0.4 4.4

TestMiner-DM+ 2.6 1 1 2 1 1 2 2.8 3 2.4 3.6 2.4 2.6 27.4
ChatGPT 1 1 1 1 1 1 2 4 3 3 2 2 3 25

Table 5. Number of seeded faults detected by NaturalSym against baselines averaged over 5 runs. "-" stands

for crashes on specific baselines. NaturalSym detects 76.4 injected faults out of 80.

Subject program
P1 P2 P3 P4 P5 Q1 Q3 Q6 Q7 Q12 Q15 Q19 Q20 Total

Seeded faults 5 5 5 5 6 7 9 6 7 5 7 6 7 80
NaturalSym 5 5 5 5 5.4 5 9 5 7 5 7 6 7 76.4
BigTest 5 5 4 5 6 4 4 4 4 3 7 4 4 59

NaturalFuzz 0 - 0 - - 0.4 0.2 0 0 0 1 0 0 1.6
NaturalFuzz-H 0 - 3.2 - - - 0.2 - 0 0 0.8 0 - 4.2
NaturalFuzz-P 0.6 - 3.2 - - 1.6 0.6 2 1 0 6 0 0 15
TestMiner 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TestMiner-DM+ 0 1 0 0 0 0 0 0 0 0 0 0 0 1
ChatGPT 1 1 1 1 0 0 0 0 0 0 0 0 0 4

completely empty. In contrast, NaturalSym generates a row "Minions: The Rise of Gru,1991,Sci-
Fi,5,02:11". NaturalSym leverages user-specified knowledge, making its generated tests align well
with the original data schema.

4.2 Fault Detection Capability

Path coverage. Table 4 shows the number of program paths covered by NaturalSym and baselines.
It is observable that NaturalSym and BigTest achieve identical path coverage on each benchmark.
This is because NaturalSym enumerates the same set of program paths as BigTest. Furthermore,
NaturalSym adopts an iterative approach to improve test naturalness. If NaturalSym finds that
constraining the value choices of a variable proves unsuccessful, it will revert to the solution
obtained in the previous round. Therefore, NaturalSym can always produce valid test inputs for
every feasible path, thus maintaining comprehensive path coverage while enhancing naturalness.

Fault detection. Table 5 shows the number of injected bugs found by NaturalSym and other
tools. NaturalSym finds 17.4 more injected bugs than BigTest on average. Among them, there is
one bug that BigTest can find but NaturalSym cannot, as illustrated in Fig. 8. Conversely, there
are 18 bugs that NaturalSym can detect but BigTest cannot, such as shown in Fig. 9.

Fig. 8a shows the only injected bug that BigTest can find but NaturalSym cannot. This applica-
tion reads transit records from an input table and then calculates the transfer duration for each
record. The highlighted if-statement corresponds to the logic for handling transfers that span across
days. Specifically, a day is added when the transfer duration is negative. However, the condition
in the faulty program is wrongly written as dep_min - arr_min < 10. BigTest generates a test
where the transfer duration is 0, which causes the faulty program to add one day to the transfer
duration erroneously. In contrast, NaturalSym generates more realistic data but misses this bug.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:13

1 val result = input1.map {s =>
2 def getDiff(arr: String, dep: String): Int = {
3 val a_min = Integer.parseInt(arr.substring(3, 5))
4 val a_hr = Integer.parseInt(arr.substring(0, 2))
5 val d_min = Integer.parseInt(dep.substring(3, 5))
6 val d_hr = Integer.parseInt(dep.substring(0, 2))
7 val arr_min = a_hr * 60 + a_min
8 val dep_min = d_hr * 60 + d_min

9 if (dep_min - arr_min < 10) {

10 //should be dep_min - arr_min < 0
11 return 24 * 60 + dep_min - arr_min
12 }
13 return dep_min - arr_min
14 }
15 val tokens = s.split(",")
16 val arrival_hr = tokens(2).substring(0, 2)
17 val diff = getDiff(tokens(2), tokens(3))
18 val airport = tokens(4)
19 (airport + arrival_hr, diff)
20 }.filter { v => v._2 < 45 }
21 .reduceByKey(_ + _)
22 .map(m => m._1 +","+m._2)
23 return result

(a) transitWrongPredicate.scala

1 arr = input1.split(",")(2)
2 && dep = input1.split(",")(3)
3 && arr_min = arr.substring(0,2).toInt * 60 + arr.substring

(3,5).toInt
4 && dep_min = dep.substring(0,2).toInt * 60 + dep.substring

(3,5).toInt
5 && diff = dep_min - arr_min
6 && diff >= 0
7 && diff < 45

(b) A non-terminating path in the original pro-

gram transit.scala.

(c) Generated by BigTest.

(d) Generated by NaturalSym.

Fig. 8. In (a) transitWrongPredicate.scala, within the UDF of the first map operation, the <0 condition is

mistakenly written as <10. (b) shows a terminating path in transit.scala. (c) and (d) are concrete tests for the

given path in (b), generated by BigTest and NaturalSym respectively.

This is because the faulty condition is only triggered when the difference falls within the range
[0,10), but NaturalSym sets arrival_time to "08:08" and departure_time to "08:20".
Even though "00A00" and "00C00" look unrealistic, the test generated by BigTest can detect

this bug. This illustrates that greater test naturalness does not necessarily correlate with superior
bug-finding potential. However, in our empirical evaluation, the scenario where NaturalSym
missed bugs that BigTest detected occurred only once. Since NaturalSym incrementally refines
test naturalness, it has the capacity to retain intermediate tests generated in each round. As the
tests generated in its initial round are identical to those generated by BigTest without naturalness
consideration, NaturalSym’s generated tests can fully encompass those of BigTest. In conclusion,
refining test naturalness does not undermine NaturalSym’s ability to detect bugs.
Fig. 9a illustrates a faulty program where NaturalSym detects a bug that BigTest does not.

The key and value within the first map operation are incorrectly swapped, as highlighted in red.
This program is designed to collect information on used cars less than 10 years old with discounts
exceeding $5000. Each row in basics contains a tuple (vehicle_id, model), and each row in
sales contains a tuple (vehicle_id, miles). The design is for basics and sales to join on
vehicle_id. However, the faulty program erroneously tries to match the model from input1 with
the vehicle_id from input2 during the join operation.

Fig. 9b represents a scenario involving a used car with age<10 and discount>5000. In the test gen-
erated by BigTest, both the original and the faulty programs output a row ",0". This occurs because
the path condition requires only that the vehicle_id from both input1 and input2 match, without
defining the relationship between vehicle_id and model. Although vehicle_id and model are
unlikely to be identical in practice, they are indistinguishable in the BigTest generated test, thereby
obscuring the injected fault. In contrast, NaturalSym produces more realistic values, implicitly
leveraging the real-world distinction that vehicle_id and model should differ. Consequently, the
original program outputs a row "Spark,51277" for the test generated by NaturalSym, whereas the
faulty program yields no output. With improved naturalness, NaturalSym successfully detects
this injected semantic bug.
Another common scenario where NaturalSym detects more injected faults occurs when a

program incorrectly aggregates a column using reduce((a,b)=>a-b) instead of reduce((a,b)

118:14 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

1 val basics = input1.map(row => {
2 val vehicle_id = row.split(",")(0)
3 val model = row.split(",")(1)

4 (model, vehicle_id)

5 // should be (vehicle_id, model)
6 })
7 val sales = input2.filter(row => {
8 val price = row.split(",")(2).toInt
9 val disc = row.split(",")(3).toInt
10 price - disc > 5000
11 })
12 .filter(row => {
13 val sold_year = row.split(",")(4)
14 .substring(0,4).toInt
15 val pro_year = row.split(",")(1).toInt
16 sold_year - pro_year < 10
17 })
18 .map(row => {
19 val vehicle_id = row.split(",")(0)
20 val miles = row.split(",")(5).toInt
21 (vehicle_id, miles)
22 })
23 val result = basics.join(sales)
24 .map(row => row._2._1 + "," + row._2._2)
25 return result

(a) usedcarsWrongKV.scala

1 input1.split(",")(0) = input2.split(",")(0)
2 && discount = input2.split(",")(2).toInt - input2.split(",")(3).

toInt
3 && age = input2.split(",")(4).substrig(0,4).toInt - input2.split(

",")(1).toInt
4 && discount > 5000
5 && age < 10

(b) A non-terminating path in the original program

usedcars.scala.

(c) Generated by BigTest.

(d) Generated by NaturalSym.

Fig. 9. In (a) usedcarsWrongKV.scala, the key and value of the returned tuple in the first map operation are

reversed. (b) shows a non-terminating path in usedcars.scala. (c) and (d) are concrete tests for the given path

in (b), generated by BigTest and NaturalSym respectively.

P1 P2 P3 P4 P5 Q1 Q3 Q6 Q7 Q12 Q15 Q19 Q20
0

50

100

150

7.92 7.89 8.5 9.03

47.32

16.74 11.3 18.07 17 11.47 16.04 20.57 22.378.67 9.74 10.1 16.17

105.24

30.57
15.33 23.66 20.08 16.25

43.18
26.08 28.09Ru

nn
in
g
Ti
m
e
(s
)

BigTest
NaturalSym

Fig. 10. The comparison of runtime between NaturalSym and BigTest averaged over 5 runs.

(a) Generated by BigTest. (b) Generated by NaturalSym.

Fig. 11. Example table generated by BigTest and NaturalSym.

=> a+b). If the aggregated column affects no branching predicate, CVC5 defaults it to zero. Conse-
quently, the final result will remain zero, regardless of whether the operator is mistakenly written
as subtraction or multiplication. Therefore, such faults cannot be detected using tests generated
by BigTest. In contrast, NaturalSym can detect such errors because it produces realistic values
rather than defaulting to zero. In summary, NaturalSym is more effective at detecting semantic
faults compared to BigTest, despite its primary focus on enhancing test naturalness.

Runtime overhead. Fig. 10 shows the runtime comparison between BigTest and NaturalSym
across 13 benchmarks. NaturalSym optimizes performance by avoiding unnecessary SMT calls
for unconstrained variables. On average, NaturalSym spends 1.47× more time than BigTest.
Specifically, in the most time-consuming benchmark Transit (P5), NaturalSym’s runtime is 2.22×
that of BigTest. Excluding the time for the symbolic executor to collect path conditions and verify
unsatisfiable path constraints, our iterative SMT solving process takes 9.64× longer time than
standard SMT solving on average.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:15

Fig. 12. Interface for user study 1. Column names are randomly shuffled and users can drag them to match

the appropriate data columns or mark them as unmatchable.

Table 6. Comparison of user study results between BigTest and NaturalSym. For user study 1, #disregarded

indicates the number of column names that users find hard to match with data columns; #mismatched and

#matched represent the number of column names that users match incorrectly and correctly. For user study

2, #marked indicates the number of generated tables that users find as realistic.

Program Table
User Study 1: Column Guessing User Study 2: User Preference

Generated by BigTest Generated by NaturalSym by BigTest by NaturalSym
#disregarded #mismatched #matched #disregarded #mismatched #matched #marked #marked

P1 input1 12.3 4.1 3.6 0.4 7.0 12.6 0.0 4.0
P1 input2 4.2 0.8 1.0 0.6 0.4 5.0 0.2 2.8
P2 input1 11.8 4.1 4.1 1.0 1.7 17.3 0.0 4.6
P3 input1 3.6 0.4 0.0 0.0 0.2 3.8 0.0 2.0
P3 input2 14.8 8.3 0.9 0.0 4.4 19.6 0.0 4.0
P4 input1 13.6 3.1 3.3 0.9 0.1 19.0 0.0 3.8
P5 input1 19.8 10.1 0.1 4.9 7.9 17.2 0.0 4.3

Total 80.0 31.0 13.0 7.8 21.8 94.4 0.2 25.4

4.3 User Study 1: Column Name Identification

In user study 1, we investigate participants’ ability to deduce the appropriate column names based
solely on table content. Ideally, the content of each table column should clearly reflect the semantics
associated with its column name. If users can accurately match the majority of column names, it
suggests that the table is realistically generated. For example, in the table produced by BigTest as
shown in Fig. 11, the value under iso_region is "AAACA", which does not resemble a typical ISO
code. Without knowledge of the airport_ID format, users might wrongly regard "AAACA" as an
airport_ID. In contrast, NaturalSym generates more recognizable values like "US-CA", aiding in
the correct identification of column names.

To conduct this user study, we collect all tests generated by both BigTest and NaturalSym for
the five custom programs (P1-P5). As shown in Fig. 12, we design a user study interface where
each box represents a table element. We randomly shuffle both the headers and the content of each
table, starting with all column names initially mismatched with their actual content. Through this
interface, users can drag a column name to the corresponding data column or click to disregard
unmatched names. After users complete their selections, we tally the numbers of disregarded,
incorrectly matched, and correctly matched column names. We exclude this experiment from the
TPC-DS benchmarks for two main reasons: (1) the input tables in TPC-DS programs have an average
of 22.6 columns, complicating user interaction; (2) massive numeric columns in TPC-DS programs
are difficult to distinguish, making the column guessing task pointless.
We recruited nine PhD students with substantial coding experience for this user study. The

results are presented in Table 6. Generally, users correctly identified column names in tests form
NaturalSym 7.26× more than in those from BigTest. For the data generated by BigTest, 65% of
the column names were marked as unmatchable, primarily due to BigTest producing a significant
amount of empty values. Even among the column names that users attempted to match, only 29.5%
were matched correctly. In contrast, users successfully deduced 76.1% of the column names from the
data generated by NaturalSym. Given that columns such as longitude and latitude are intrinsically
hard to distinguish, we believe that NaturalSym effectively preserves semantics in test generation.

118:16 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Fig. 13. Interface for user study 2. Users can mark their preferences by clicking on the table.

4.4 User Study 2: User Preference

In user study 2, we place the data generated by BigTest and NaturalSym side by side for the
same program path and allow users to mark their preferences. As shown in Fig. 13, we design a
user study interface where participants can mark the box of the table to indicate their preferences.
Participants can also select both tables if both appear realistic or choose neither if the content does
not match the headers.
Nine PhD students participated in this user study. The results are also presented in Table 6.

Participantsmarked 25.4 out of 28 tables generated byNaturalSym as realistic on average. Although
several tables generated by NaturalSym are marked as unrealistic, all participants unanimously
preferred the data generated by NaturalSym, underscoring its effectiveness.

4.5 Numerical Outliers

Numerical outliers are another common type of data unnaturalness. NaturalSym leverages the
knowledge of statistical distribution to reduce outliers. For instance, if a program contains a branch
predicate elevation_ft > 1000, symbolic execution would generate a value of 9000 for the true
branch and 0 for the false branch. In contrast, NaturalSym leverages user annotations such as
Gaussian(𝜇 = 1442, 𝜎 = 1849) to produce more typical values of 1469 and 447 for these branches,
aligning closely with the mean of 1442 specified in the user-defined distribution.

To evaluate NaturalSym’s effectiveness in reducing numerical outliers, we collect all numerical
values from Gaussian columns in the tests generated by both NaturalSym and BigTest. Given that
each column follows a unique Gaussian distribution, we normalize each value 𝑥 into its absolute
z-score, |𝑥−𝜇 |

𝜎
, to quantify the distance from the mean in terms of standard deviations. Fig. 14

displays the cumulative distribution of these z-scores. We use the 3𝜎-rule [40], a classical criterion
for outlier detection, which identifies data points that lie more than 3𝜎 away from the mean as
outliers. Under this criterion, 44.7% of the data produced by BigTest are outliers, in contrast to
only 0.95% from NaturalSym.

In addition, we conduct an ablation study by removing statistical distributions from user annota-
tions, denoted as NaturalSym-N. Consider the scenario where a user annotates themovie rating col-
umn with the constraint 0 ≤ rating ≤ 10 and a Gaussian distribution Gaussian(𝜇 = 6.1, 𝜎 = 1.0).
When we remove the distributional knowledge, NaturalSym-N retains only the range constraint
0 ≤rating≤ 10 and consistently produces a value of 0 for this column. Overall, NaturalSym-N
results in 22.2% fewer outliers than BigTest, yet it still produces 21.5% more outliers than Natural-
Sym. This demonstrates that NaturalSym can address constraint solvers’ limitation in producing
an extensive array of biased values by leveraging statistical distributional knowledge.
NaturalSym goes beyond merely pushing user-specified naturalness constraints into SMT

solvers. While constraints such as ivar ∈ Discrete(d1,d2) can be effectively represented by the
SMT formula assert (or (= ivar d1) (= ivar d2)), statistical distributional constraints like
Gaussian distributions are not solvable by SMT solvers such as CVC5 [14] or Z3 [25]. Additionally,
modern SMT solvers implement complex solving procedures, including simplex methods for
linear programming. We investigated Z3 and CVC5 source code and found that integrating the
sampling procedure within backend solvers is challenging. This finding justifies NaturalSym’s
pragmatic approach of handling sampling based on user annotations externally from the SMT
solver implementation.

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:17

0 1 2 3 4 5
0

20

40

60

80

100

|Z-score|

Cu
m
ul
at
iv
e
D
is
tr
ib
ut
io
n
(%
)

NaturalSym
NaturalSym-N

BigTest

Fig. 14. Cumulative distribution of numerical values in Gaussian columns from NaturalSym, NaturalSym-N,

and BigTest. We use the absolute z-score
|𝑥−𝜇 |
𝜎 as the x-axis for normalization, the cumulative probability

𝑃 (|z-score| ≤ 𝑦) as the y-axis.

4.6 Comparison with NaturalFuzz

NaturalFuzz [36] is a coverage-guided fuzzer designed to produce natural tests for DISC programs.
It profiles each row in the existing dataset against each program branch to measure its branch
coverage and selects a small set of rows by maximizing branch coverage. Starting from this reduced
set of rows, NaturalFuzz applies an interleaving mutation strategy to construct new rows by
combining existing column values from different rows. As synthetic rows are built upon existing
data, NaturalFuzz increases the chance of producing realistic tests. Hence, we select NaturalFuzz
as a natural test generation baseline. Given that NaturalFuzz can generate new tests from existing
ones, we further explore combining NaturalFuzz with the symbolic executor BigTest. Specif-
ically, we evaluate three settings of NaturalFuzz: (1) NaturalFuzz as is, (2) NaturalFuzz-H
(NaturalFuzz-Hybrid), taking seeds from both symbolic execution and original datasets, and (3)
NaturalFuzz-P (NaturalFuzz-PureSymbolic), taking seeds from symbolic execution only.
In evaluation, we exclude three benchmarks for NaturalFuzz and NaturalFuzz-P, as well as

six benchmarks for NaturalFuzz-H due to occurrences of crashes. NaturalFuzz can produce
natural-looking tests like "338,250,US-OR,44.50,-123.29" for the airport dataset, where the third
column is the airport code and the last two columns correspond to GPS location. As shown in Table
3, NaturalFuzz’s perplexity score is 3.48, lower than NaturalSym’s 4.90. NaturalFuzz produces
natural tests due to its intrinsic nature of combining rows from existing datasets.
However, as shown in Table 4, NaturalFuzz, NaturalFuzz-H, and NaturalFuzz-P achieve

77.5%, 85.3%, and 76.2% lower path coverage compared to NaturalSym. As shown in Table 5,
NaturalFuzz, NaturalFuzz-H and NaturalFuzz-P detect 97.9%, 94.6%, and 80.4% fewer injected
faults compared to NaturalSym. NaturalSym outperforms NaturalFuzz for several reasons:
(1) NaturalFuzz depends on seed tests to cover numerous program branches, but NaturalSym
can symbolically generate new content absent in seed tests. (2) NaturalFuzz aims at improving
statement coverage instead of path coverage. (3) Even after adding symbolic execution as a precursor,
NaturalFuzz winnows out a small set of seeds based on branch coverage and removes valuable
seeds from symbolic execution.

4.7 Comparison with TestMiner

TestMiner [27] predicts suitable values based on the target method signature. In its data mining
phase, TestMiner collects test case calls such as sqlParser.parse("SELECT x FROM y") from Maven

118:18 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

Fig. 15. To generate tests using ChatGPT, we provide the Scala program under test and the schemas of

the input datasets to ChatGPT. We explicitly request that ChatGPT produces the same number of rows as

NaturalSym for fairness.

Central Repository [7] and indexes input literals "SELECT x FROM y" according to the test function
signature org.sql.SQLParser(java.lang.String) into a retrieval model. In its retrieval phase, TestMiner
looks up the retrieval model and provides values to test generators such as Randoop [49] based
on the target method signature. For example, if we request TestMiner to provide inputs for
sqlParser.parse, TestMiner will possibly return a valid SQL query string from its mined value pool
rather than a random string such as "hi!" preset by Randoop. By mining from existing test calls and
matching them with context words, TestMiner outperforms random test generators. Hence, we
take TestMiner as another baseline for comparison.
Since the Maven Central Repository lacks the structured dataset commonly required by DISC

programs, we evaluate TestMiner in two settings: (1) TestMiner as is, and (2) TestMiner-
DM+ (TestMiner-DataMining+) with additional data-mining from DISC program datasets. For
TestMiner-DM+, we supplement its data mining phase with sampled rows from DISC program
datasets. To generate tests, we query TestMiner using the signature of our target program, such as
NaturalSym.airport.test(java.lang.String). For fairness, we require TestMiner and TestMiner-DM+
to generate the same amount of rows as NaturalSym.
As shown in Table 3, TestMiner achieves a perplexity score of 4.73 compared to BigTest’s

40.01, suggesting TestMiner’s producing natural-looking tests. However, the tests generated
by TestMiner are of low quality for DISC programs. For instance, TestMiner generates a row
"getAge" for the car_info dataset, whereas a row resembling “2432422,2014,28735,14788,2022-07-
05,63342” is expected. Despite enhanced data mining efforts, TestMiner-DM+ still produces rows
that do not pass the input validation stage of the target application.
As shown in Table 4, TestMiner and TestMiner-DM+ cover 96% and 75.1% fewer paths com-

pared to NaturalSym. Table 5 shows that TestMiner detects no injected bugs while TestMiner-
DM+ detects 98.7% fewer injected faults than NaturalSym. We find that (1) TestMiner is not
effective in DISC program testing, as it is trained on other projects, and that (2) if we build indexes
using a subset of data row samples, TestMiner effectively becomes a method of sampling from
existing tests instead of synthesizing new tests.

4.8 A Case Study of GPT-4 on Natural Test Input Generation

To explore the feasibility of using Large Language Models (LLMs) for natural test generation, we
conduct a case study using GPT-4 [8] to generate tests for DISC programs. We provide GPT-4
with the entire source code of the target function along with its input dataset schema. For a fair
comparison, we explicitly instruct ChatGPT to generate the same number of rows as NaturalSym.
Details of our prompting phrases are provided in Fig. 15.
ChatGPT can generate fairly natural-looking data, such as "The Shawshank Redemption,1994,

Drama,9.3,142" in the movie dataset. Table 3 shows that ChatGPT’s perplexity is 16.92, lower
than BigTest’s 40.01. However, its perplexity score is much higher than NaturalFuzz’s 3.48 and

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:19

NaturalSym’s 4.90. This is because ChatGPT’s generated data does not meet the input format
requirement. For example, the movie duration column in the movie dataset is expected to be in the
format of "02:22" (2 hours and 22 minutes), rather than simply stating the total minutes as "142". As
shown in Table 4 and Table 5, ChatGPT only covers 25 program paths compared to NaturalSym’s
110 and detects only 4 injected faults across 13 benchmarks compared to NaturalSym’s 76.

Our empirical results indicate that (1) ChatGPT does not achieve adequate path coverage. Despite
being provided with the complete target program, ChatGPT rather serves as a dictionary-based
test generator based on the schema. (2) ChatGPT requires highly involved and detailed prompts.
Even when provided with the input dataset schema, it still outputs synthetic rows that do not meet
the requirements. Considering the highly structured nature of DISC program inputs, ChatGPT’s
performance in both path coverage and defect detection is inferior to that of NaturalSym. Accord-
ing to Wang et al. [64], none of the existing LLM-based approaches combine with constraint-based
testing, like NaturalSym’s capability of symbolic execution.

5 RELATEDWORK

Natural testing. NaturalFuzz [36] extracts and combines column values from existing data to
synthesize new rows for DISC testing. However, NaturalFuzz aims to improve statement coverage
and does not enumerate path conditions like NaturalSym. TestMiner [27] leverages data mining
techniques to predict suitable input string literals from existing test calls. Additionally, SDV [53]
and Faker [5] are capable of generating natural-looking test cases. However, they require extensive
manual configuration and often produce an overwhelming volume of test cases, making them
less effective for DISC testing [36]. Houkjær et al. [33] propose a data generation framework
incorporating a graph-based approach, allowing users to provide data types and distributions to
enhance data naturalness. DGL [17] is a framework to generate large-scale datasets with intra-
table and inter-table correlations. DOMINO [10] focuses on increasing schema coverage in dataset
generation. In comparison, NaturalSym is a symbolic execution-based tool that targets high path
coverage and high fault detection while maintaining the naturalness of the generated inputs.
DISC application testing. BigTest [30] is a symbolic execution-based testing for DISC ap-

plications but cannot generate natural-looking tests like NaturalSym. Various fuzzers [36, 71]
use framework abstraction to efficiently fuzz DISC applications without invoking the distributed
system. Csallner et al. [23] are the first to use dynamic symbolic execution to generate test inputs
for MapReduce programs. This technique mainly identifies non-determinism bugs arising from the
violation of UDF correctness conditions. Xu et al. [67] further develop the technique by checking
additional properties such as statefulness and blocking.

Dictionary-based fuzzing. Dictionary-based mutation was introduced [70] to compensate for
the grammar blind nature of AFL. However, dictionary-based fuzzing is suboptimal in our scenario.
Given the highly structured nature of the input datasets, dictionary-based testing often fails to pass
input validation and struggles to detect deep semantic bugs. In contrast, NaturalSym produces
sample sets based on user annotations as a guide for naturalness, while aiming to improve path
coverage using constraint solvers.
Symbolic execution. Previous studies [13, 38, 63] leveraged user-specified preconditions to

compensate for information that symbolic executors cannot capture from branch predicates. These
preconditions typically include the length of a buffer or the prefix of a buffer, primarily employed
to mitigate path explosion in symbolic execution. NaturalSym has expanded the types of user
annotations. Moreover, it perceives user specifications as soft guidance rather than hard constraints,
aiming to maximize path coverage.
Property-based testing. Property-based testing (PBT) is a powerful testing technique popu-

larized by QuickCheck [22] in Haskell. PBT uses executable properties to generate tests and has

118:20 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

successfully discovered numerous in a range of real-world softwares [11, 12, 34, 35]. Several works
[39, 43, 50] have enhanced property-based testing with coverage guidance. Recently, Vikram et
al. [62] provide LLMs with additional API documentation to generate property-based tests. The
application of PBT to DISC testing continues to be a promising area for exploration.

LLM-based testing. Large language models are proven to be successful over many tasks when
properly prompted [16, 59]. Many techniques [9, 56–58, 60] pre-train or fine-tune LLMs for unit test
generation. Several approaches [24, 29, 42, 54, 62, 66, 68, 72] design effective prompting words for
unit test generation. Multiple works [44, 46, 47, 61] utilize LLMs for test oracle generation. Lemieux
et al. propose CodaMosa [41], which engages LLMs when the coverage of search-based testing
plateaus. However, according to Wang et al. [64], there is no such LLM-driven test generation
method that integrates with constraint-based testing.

6 CONCLUSION

We are the first to incorporate the notion of naturalness into symbolic execution-based test genera-
tion without sacrificing path coverage. We instantiated the idea in NaturalSym, a novel symbolic
test generation tool. NaturalSym enables users to specify the underlying semantics of program
inputs, capturing information that symbolic execution cannot. Based on user annotations, it can
draw realistic examples for input variables and prioritize their use during constraint solving. Natu-
ralSym significantly enhances test naturalness and detects 17.4 more injected faults on average
than the state-of-the-art DISC symbolic executor BigTest, by only adding 1.47× runtime over-
head. NaturalSym also outperforms alternative natural test generators in terms of path coverage
and defect detection, finding injected faults 47.8× more than NaturalFuzz and 19.1× more than
ChatGPT, while TestMiner fails to detect any injected faults.

DATA-AVAILABILITY STATEMENT

All scripts and datasets are available on Zenodo [65].

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under grant numbers 2106838, 1764077,
1956322, 2106404, and 2106420. It is also supported in part by funding from Amazon and Samsung.
We want to thank the anonymous reviewers for their constructive feedback that helped improve
the work.

REFERENCES

[1] Accessed: 2023. Airport Codes Dataset. https://datahub.io/core/airport-codes#resource-airport-codes
[2] Accessed: 2023. Carvana Car Sales Dataset. https://aws.amazon.com/marketplace/pp/prodview-y77x3t6zisn4w
[3] Accessed: 2023. ChatGPT. https://openai.com/blog/chatgpt
[4] Accessed: 2023. DistilGPT2. https://huggingface.co/distilgpt2
[5] Accessed: 2023. Faker. https://faker.readthedocs.io/en/master/
[6] Accessed: 2023. IMDB Dataset. https://www.imdb.com/search/title/?title_type=feature,tv_movie&ref_=adv_prv’
[7] Accessed: 2024. Maven Central. https://central.sonatype.com
[8] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,

Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023). https://doi.org/10.48550/arXiv.2303.08774

[9] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. 2023. A3Test: Assertion-Augmented Automated
Test Case Generation. arXiv preprint arXiv:2302.10352 (2023). https://doi.org/10.48550/arXiv.2302.10352

[10] Abdullah Alsharif, GregoryM. Kapfhammer, and Phil McMinn. 2018. DOMINO: Fast and Effective Test Data Generation
for Relational Database Schemas. In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST). 12–22. https://doi.org/10.1109/ICST.2018.00012

https://datahub.io/core/airport-codes#resource-airport-codes
https://aws.amazon.com/marketplace/pp/prodview-y77x3t6zisn4w
https://openai.com/blog/chatgpt
https://huggingface.co/distilgpt2
https://faker.readthedocs.io/en/master/
https://www.imdb.com/search/title/?title_type=feature,tv_movie&ref_=adv_prv'
https://central.sonatype.com
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2302.10352
https://doi.org/10.1109/ICST.2018.00012

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:21

[11] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing telecoms software with Quviq QuickCheck.
In Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang. 2–10. https://doi.org/10.1145/1159789.1159792

[12] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Testing AUTOSAR software with QuickCheck. In
2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE,
1–4. https://doi.org/10.1109/ICSTW.2015.7107466

[13] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Maverick Woo, and David Brumley. 2014.
Automatic exploit generation. Commun. ACM 57, 2 (2014), 74–84. https://doi.org/10.1145/2560217.2560219

[14] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 415–442.
https://doi.org/10.1007/978-3-030-99524-9_24

[15] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard: Version 2.0. In Proceedings of the 8th
international workshop on satisfiability modulo theories (Edinburgh, UK), Vol. 13. 14.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901. https://dl.acm.org/doi/abs/10.5555/3495724.3495883

[17] Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators (VLDB ’05). VLDB Endowment, 1097–1107.
https://dl.acm.org/doi/10.5555/1083592.1083719

[18] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, Vol. 8. 209–224. https://dl.acm.org/doi/10.5555/1855741.1855756

[19] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. 2008. EXE: Automatically
generating inputs of death. ACM Transactions on Information and System Security (TISSEC) 12, 2 (2008), 1–38.
https://doi.org/10.1145/1455518.1455522

[20] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. Unleashing mayhem on binary code.
In 2012 IEEE Symposium on Security and Privacy. IEEE, 380–394. https://doi.org/10.1109/SP.2012.31

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E platform: Design, implementation, and
applications. ACMTransactions on Computer Systems (TOCS) 30, 1 (2012), 1–49. https://doi.org/10.1145/2110356.2110358

[22] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs.
In Proceedings of the fifth ACM SIGPLAN international conference on Functional programming. 268–279. https:
//doi.org/10.1145/351240.351266

[23] Christoph Csallner, Leonidas Fegaras, and Chengkai Li. 2011. New ideas track: testing mapreduce-style programs.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering. 504–507. https://doi.org/10.1145/2025113.2025204

[24] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C Desmarais. 2024. Effective
test generation using pre-trained large language models and mutation testing. Information and Software Technology
171 (2024), 107468. https://doi.org/10.1016/j.infsof.2024.107468

[25] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-
3_24

[26] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM
51, 1 (2008), 107–113. https://doi.org/10.1145/1327452.1327492

[27] Luca Della Toffola, Cristian-Alexandru Staicu, and Michael Pradel. 2017. Saying ‘hi!’is not enough: Mining inputs for
effective test generation. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 44–49. https://doi.org/10.1109/ASE.2017.8115617

[28] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated whitebox fuzz testing. In NDSS, Vol. 8.
151–166.

[29] Vitor Guilherme and Auri Vincenzi. 2023. An initial investigation of ChatGPT unit test generation capability. In
Proceedings of the 8th Brazilian Symposium on Systematic and Automated Software Testing. 15–24. https://doi.org/10.
1145/3624032.3624035

[30] Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi, and Miryung Kim. 2019. White-Box Testing of Big
Data Analytics with Complex User-Defined Functions. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 290–301. https://doi.org/10.1145/3338906.3338953

[31] Muhammad Ali Gulzar, Siman Wang, and Miryung Kim. 2018. Bigsift: automated debugging of big data analytics in
data-intensive scalable computing. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 863–866. https://doi.org/10.1145/3236024.
3264586

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1109/ICSTW.2015.7107466
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1007/978-3-030-99524-9_24
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/10.5555/1083592.1083719
https://dl.acm.org/doi/10.5555/1855741.1855756
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2025113.2025204
https://doi.org/10.1016/j.infsof.2024.107468
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/ASE.2017.8115617
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1145/3338906.3338953
https://doi.org/10.1145/3236024.3264586
https://doi.org/10.1145/3236024.3264586

118:22 Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim

[32] Hans Hofmann. 1994. Statlog (German Credit Data). UCI Machine Learning Repository. https://doi.org/10.24432/
C5NC77

[33] Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and Realistic Data Generation. In Proceedings of the
32nd International Conference on Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment, 1243–1246.
https://dl.acm.org/doi/10.5555/1182635.1164254

[34] John Hughes. 2016. Experiences with QuickCheck: testing the hard stuff and staying sane. In A List of Successes
That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Springer, 169–186.
https://doi.org/10.1007/978-3-319-30936-1_9

[35] John Hughes, Benjamin C Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries of dropbox: property-based testing
of a distributed synchronization service. In 2016 IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 135–145. https://doi.org/10.1109/ICST.2016.37

[36] AhmadHumayun, YaoxuanWu,Miryung Kim, andMuhammadAli Gulzar. 2023. NaturalFuzz: Natural Input Generation
for Big Data Analytics. In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering.
Association for Computing Machinery, San Francisco, CA, USA. https://doi.org/10.1109/ASE56229.2023.00034

[37] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of mutation testing. IEEE transactions on
software engineering 37, 5 (2010), 649–678. https://doi.org/10.1109/TSE.2010.62

[38] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. 2003. Generalized symbolic execution for model checking
and testing. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
553–568. https://doi.org/10.1007/3-540-36577-X_40

[39] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Coverage guided, property based testing.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–29. https://doi.org/10.1145/3360607

[40] Rüdiger Lehmann. 2013. 3 𝜎-rule for outlier detection from the viewpoint of geodetic adjustment. Journal of Surveying
Engineering 139, 4 (2013), 157–165. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000112

[41] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. 2023. CODAMOSA: Escaping coverage
plateaus in test generation with pre-trained large language models. In International conference on software engineering
(ICSE). https://doi.org/10.1109/ICSE48619.2023.00085

[42] Vincent Li and Nick Doiron. 2023. Prompting code interpreter to write better unit tests on quixbugs functions. arXiv
preprint arXiv:2310.00483 (2023). https://doi.org/10.48550/arXiv.2310.00483

[43] David R MacIver, Zac Hatfield-Dodds, et al. 2019. Hypothesis: A new approach to property-based testing. Journal of
Open Source Software 4, 43 (2019), 1891. https://doi.org/10.21105/joss.01891

[44] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino, Denys Poshyvanyk, Rocco Oliveto,
and Gabriele Bavota. 2022. Using transfer learning for code-related tasks. IEEE Transactions on Software Engineering
49, 4 (2022), 1580–1598. https://doi.org/10.1109/TSE.2022.3183297

[45] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS. In VLDB, Vol. 6. 1049–1058.
[46] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt selection for code-related few-shot learning.

In Proceedings of the 45th International Conference on Software Engineering (ICSE’23). https://doi.org/10.1109/ICSE48619.
2023.00205

[47] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos Gligoric. 2023. Learning deep semantics
for test completion. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2111–2123.
https://doi.org/10.1109/ICSE48619.2023.00178

[48] Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT modulo theories and optimization problems. In Theory
and Applications of Satisfiability Testing-SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15, 2006.
Proceedings 9. Springer, 156–169. https://doi.org/10.1007/11814948_18

[49] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007. Feedback-directed random test generation.
In 29th International Conference on Software Engineering (ICSE’07). IEEE, 75–84. https://doi.org/10.1109/ICSE.2007.37

[50] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-guided property-based testing in Java. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 398–401. https:
//doi.org/10.1145/3293882.3339002

[51] Corina S Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: symbolic execution of Java bytecode. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software Engineering. 179–180. https://doi.org/10.1145/
1858996.1859035

[52] Corina S Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter Mehlitz, and Neha Rungta. 2013. Symbolic
PathFinder: integrating symbolic execution with model checking for Java bytecode analysis. Automated Software
Engineering 20 (2013), 391–425. https://doi.org/10.1007/s10515-013-0122-2

[53] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The Synthetic Data Vault. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA). 399–410. https://doi.org/10.1109/DSAA.2016.49

https://doi.org/10.24432/C5NC77
https://doi.org/10.24432/C5NC77
https://dl.acm.org/doi/10.5555/1182635.1164254
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1109/ICST.2016.37
https://doi.org/10.1109/ASE56229.2023.00034
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/3360607
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000112
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2310.00483
https://doi.org/10.21105/joss.01891
https://doi.org/10.1109/TSE.2022.3183297
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1007/11814948_18
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1109/DSAA.2016.49

Natural Symbolic Execution-Based Testing for Big Data Analytics 118:23

[54] Laura Plein, Wendkûuni C Ouédraogo, Jacques Klein, and Tegawendé F Bissyandé. 2023. Automatic generation of test
cases based on bug reports: a feasibility study with large language models. arXiv preprint arXiv:2310.06320 (2023).
https://doi.org/10.48550/arXiv.2310.06320

[55] Nihar Ranjan, Kaushal Mundada, Kunal Phaltane, and Saim Ahmad. 2016. A Survey on Techniques in NLP. International
Journal of Computer Applications 134, 8 (2016), 6–9. https://doi.org/10.5120/ijca2016907355

[56] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent J. Hellendoorn. 2023. CAT-LM Training Language
Models on Aligned Code And Tests. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 409–420. https://doi.org/10.1109/ASE56229.2023.00193

[57] Jiho Shin, Sepehr Hashtroudi, Hadi Hemmati, and Song Wang. 2023. Domain Adaptation for Deep Unit Test Case
Generation. arXiv e-prints (2023), arXiv–2308. https://doi.org/10.48550/arXiv.2308.08033

[58] Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. 2023. Reinforcement Learning
from Automatic Feedback for High-Quality Unit Test Generation. arXiv preprint arXiv:2310.02368 (2023). https:
//doi.org/10.48550/arXiv.2310.02368

[59] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. LLaMA: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023). https://doi.org/10.48550/arXiv.2302.13971

[60] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. 2020. Unit test case
generation with transformers and focal context. arXiv preprint arXiv:2009.05617 (2020). https://doi.org/10.48550/arXiv.
2009.05617

[61] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2022. Generating accurate assert statements
for unit test cases using pretrained transformers. In Proceedings of the 3rd ACM/IEEE International Conference on
Automation of Software Test. 54–64. https://doi.org/10.1145/3524481.3527220

[62] Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. 2023. Can large language models write good property-based
tests? arXiv preprint arXiv:2307.04346 (2023). https://doi.org/10.48550/arXiv.2307.04346

[63] Willem Visser, Corina S Pv asv areanu, and Sarfraz Khurshid. 2004. Test input generation with Java PathFinder.
In Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and analysis. 97–107. https:
//doi.org/10.1145/1007512.1007526

[64] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with
large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering (2024). https:
//doi.org/10.1109/TSE.2024.3368208

[65] Yaoxuan Wu, Ahmad Humayun, Muhammad Ali Gulzar, and Miryung Kim. 2024. Reproduction Package of ’Natural
Symbolic Execution-based Testing for Big Data Analytics’. https://doi.org/10.5281/zenodo.11090237

[66] Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. 2023. ChatUniTest: a ChatGPT-based
automated unit test generation tool. arXiv preprint arXiv:2305.04764 (2023). https://doi.org/10.48550/arXiv.2305.04764

[67] Zhihong Xu, Martin Hirzel, Gregg Rothermel, and Kun-Lung Wu. 2013. Testing properties of dataflow program
operators. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). 103–113. https:
//doi.org/10.1109/ASE.2013.6693071

[68] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng. 2023. No More
Manual Tests? Evaluating and Improving ChatGPT for Unit Test Generation. arXiv preprint arXiv:2305.04207 (2023).
https://doi.org/10.48550/arXiv.2305.04207

[69] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing
with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). https://dl.acm.org/doi/
10.5555/1863103.1863113

[70] Michał Zalewski. 2015. afl-fuzz: making up grammar with a dictionary in hand. (2015). https://lcamtuf.blogspot.com/
2015/01/afl-fuzz-making-up-grammar-with.html

[71] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung Kim. 2020. BigFuzz: Efficient Fuzz
Testing for Data Analytics Using Framework Abstraction. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 722–733. https://doi.org/10.1145/3324884.3416641

[72] Ying Zhang, Wenjia Song, Zhengjie Ji, Na Meng, et al. 2023. How well does LLM generate security tests? arXiv preprint
arXiv:2310.00710 (2023). https://doi.org/10.48550/arXiv.2310.00710

Received 2023-09-28; accepted 2024-04-16

https://doi.org/10.48550/arXiv.2310.06320
https://doi.org/10.5120/ijca2016907355
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.48550/arXiv.2308.08033
https://doi.org/10.48550/arXiv.2310.02368
https://doi.org/10.48550/arXiv.2310.02368
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2009.05617
https://doi.org/10.48550/arXiv.2009.05617
https://doi.org/10.1145/3524481.3527220
https://doi.org/10.48550/arXiv.2307.04346
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.5281/zenodo.11090237
https://doi.org/10.48550/arXiv.2305.04764
https://doi.org/10.1109/ASE.2013.6693071
https://doi.org/10.1109/ASE.2013.6693071
https://doi.org/10.48550/arXiv.2305.04207
https://dl.acm.org/doi/10.5555/1863103.1863113
https://dl.acm.org/doi/10.5555/1863103.1863113
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://doi.org/10.1145/3324884.3416641
https://doi.org/10.48550/arXiv.2310.00710

	Abstract
	1 Introduction
	2 Motivating Example
	3 Methodology
	3.1 Formalization
	3.2 Additional Prior Knowledge Annotation
	3.3 Our Algorithm

	4 Evaluation
	4.1 Perplexity Measurement
	4.2 Fault Detection Capability
	4.3 User Study 1: Column Name Identification
	4.4 User Study 2: User Preference
	4.5 Numerical Outliers
	4.6 Comparison with NaturalFuzz
	4.7 Comparison with TestMiner
	4.8 A Case Study of GPT-4 on Natural Test Input Generation

	5 Related Work
	6 Conclusion
	References

